Wavelength dependence of prepulse laser beams on EUV emission from CO2 reheated Sn plasma
نویسندگان
چکیده
Extreme ultraviolet (EUV) emission from laser-produced plasmas (LPP) centered at 13.5 nm is considered a leading candidate for the light source in future lithography systems. Tin is currently the best material for generating this EUV emission since it emits strongly within the 13.5 nm region due to its various ionic states (SnSn). Highly efficient and low-debris LPPs are a pre-requisite for their use as light sources for EUV lithography. Tin plasmas generate debris that can damage collection optics over time. Techniques to mitigate debris are needed to extend the lifetime of these components and the system. Optimization of plasma conditions is necessary for increasing EUV emission and enhancing conversion efficiency (CE). Improving the source CE is necessary in order to reduce the cost of ownership and hence, develop a commercially viable lithography system for the semiconductor industry. One method to accomplish this is to reheat pre-formed plasma with a laser pulse to enhance EUV emission. This enhancement is achieved by controlling those plasma conditions necessary for optimizing EUV emission. We investigated the role of prepulse laser wavelength on prepulse plume formation and EUV in-band signal enhancement. A 6 ns Nd:YAG laser operating at 1064 nm and 266 nm was used for generating the prepulse plume. The expanding plume was then reheated by a 35 ns CO2 laser operating at 10.6 μm. The role of prepulse wavelength and energy on EUV conversion efficiency is discussed.
منابع مشابه
Effect of prepulse laser wavelength on EUV emission from CO2 reheated laser-produced Sn plasma
We investigated the role of prepulse laser wavelength on extreme-ultraviolet (EUV) emission and ionic debris generation. A 6 ns Nd:YAG laser operating at 266 nm was used to generate a pre-plasma that was then reheated by a 35 ns CO2 laser pumping pulse at 10.6 μm. At an ideal delay time, improvement in EUV conversion efficiency (CE) of up to 30 % was seen compared to the CE from the pumping pul...
متن کاملEnhancements of extreme ultraviolet emission using prepulsed Sn laser-produced plasmas for advanced lithography applications
Laser-produced plasmas (LPP) from Sn targets are seriously considered to be the light source for extreme ultraviolet (EUV) next generation lithography, and optimization of such a source will lead to improved efficiency and reduced cost of ownership of the entire lithography system. We investigated the role of reheating a prepulsed plasma and its effect on EUV conversion efficiency (CE). A 6 ns,...
متن کاملInteraction of a CO2 Laser Pulse With Tin-Based Plasma for an Extreme Ultraviolet Lithography Source
The interaction of a CO2 laser pulse with Sn-based plasma for a 13.5-nm extreme ultraviolet (EUV) lithography source was investigated. It was noted that a CO2 laser with wavelength of 10.6 μm is more sensitive to surface impurities as compared with a Nd:YAG laser with wavelength of 1.06 μm. This reveals that a CO2 laser is more likely absorbed in a thinner layer near the target surface. Compare...
متن کاملThe effect of laser wavelength on emission and particle dynamics of Sn plasma
We investigated the effects of laser wavelength on the atomic, ionic, and radiative emission from laser-produced tin plasmas. For generating plasmas, planar tin targets were excited using either high intensity neodymium-doped yttrium aluminum garnet Nd:YAG, 1.06 m or carbon dioxide CO2, 10.6 m laser pulses; both are considered to be potential excitation lasers for an extreme ultraviolet EUV lit...
متن کاملNonclassical hydrodynamic behavior of Sn plasma irradiated with a long duration CO2 laser pulse
It was found that the electron density scale length of Sn plasma irradiated with a long duration CO2 laser pulse is much shorter than that predicted by the classical isothermal model. The experimentally observed small dominant region of in-band (2% bandwidth) 13.5-nm extreme ultraviolet (EUV) emission coincides with this constrained hydrodynamic behavior. The lower hydrodynamic efficiency may c...
متن کامل